18.1: The Stream System (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    16639
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The fundamental unit of study for fluvial processes is the drainage basin or watershed. A drainage basin is a portion of the Earth's surface that contains a main stream and its tributaries and is bounded by a drainage divide. The drainage divide represents the boundary between adjacent drainage basins and determines into which basin precipitation flows. There is no upper or lower limit to the size of a drainage basin. We can delimit the drainage basin of the Mississippi River as most of the area east of the Rocky Mountains. The main stream is the Mississippi River and its tributaries are rivers like the Missouri, Arkansas, and Wisconsin to name just a few. Or, at a more local scale we can delimit the Wolf River basin found in central Wisconsin.

    18.1: The Stream System (2)

    Streams within the drainage basin are either perennial or intermittent in flow. Perennial streams flow all year. The base flow of these streams is provided by groundwater seepage into the channel. Tributary streams are small streams that enter into the main stream. Tributary streams, especially the smaller ones around the periphery of the basin, are intermittent. Intermittent streams 18.1: The Stream System (3) only flow during wetter times of the year. Much of their flow is provided by surface runoff and when the water table is higher as a result of moist conditions. The upland between tributaries is called an interfluve.

    18.1: The Stream System (4)

    The famous geographer John Wesley Powell recognized the value of the watershed concept in environmental planning. In 1878 Powell published his Report on the Lands of the Arid Region, which propose a strategy for settling the western United States without fighting over limited water resources. All Things Considered's Howard Berkes reports "Powell's knowledge of the region convinced him that water, or the lack of it, would be a major and ongoing problem in America's westward expansion." Powell proposed to organize settlements around water and watersheds because overuse or pollution would impact everyone in the watershed.

    18.1: The Stream System (5)

    Some streams are classified as exotic streams. Exotic streams are those that originate in a humid region but flow through an arid region. Such is the case of the Nile and Colorado Rivers. The headwaters of the Nile River is in the wet Ethiopian Highlands, and travels through the eastern portion of the Sahara Desert on its way to the Mediterranean Sea. Along its route, the river loses substantial amounts of water to evaporation. The same is true for the Colorado River. With its headwaters in the Rocky Mountains, it flows south and west towards the southwest desert of the United States. During its journey it loses nearly half its flow to evaporation. The Colorado used to flow to the ocean, astonishingly it no longer does. The reason is that the remaining water has been diverted for agriculture and municipal water use.

    Drainage Patterns

    18.1: The Stream System (6)

    Over time, a stream system achieves a particular drainage pattern to its network of stream channels and tributaries as determined by local geologic factors. Drainage patterns or nets are classified on the basis of their form and texture. Their shape or pattern develops in response to the local topography and subsurface geology. Drainage channels develop where surface runoff is enhanced and earth materials provide the least resistance to erosion. The texture is governed by soil infiltration, and the volume of water available in a given period of time to enter the surface. If the soil has only a moderate infiltration capacity and a small amount of precipitation strikes the surface over a given period of time, the water will likely soak in rather than evaporate away. If a large amount of water strikes the surface then more water will evaporate, soaks into the surface, or ponds on level ground. On sloping surfaces this excess water will runoff. Fewer drainage channels will develop where the surface is flat and the soil infiltration is high because the water will soak into the surface. The fewer number of channels, the coarser will be the drainage pattern.

    18.1: The Stream System (7)

    A dendritic drainage pattern is the most common form and looks like the branching pattern of tree roots. It develops in regions underlain by hom*ogeneous material. That is, the subsurface geology has a similar resistance to weathering so there is no apparent control over the direction the tributaries take. Tributaries joining larger streams at acute angle (less than 90 degrees). 18.1: The Stream System (8)

    18.1: The Stream System (9)

    Parallel drainage patterns form where there is a pronounced slope to the surface. A parallel pattern also develops in regions of parallel, elongate landforms like outcropping resistant rock bands. Tributary streams tend to stretch out in a parallel-like fashion following the slope of the surface. A parallel pattern sometimes indicates the presence of a major fault that cuts across an area of steeply folded bedrock. All forms of transitions can occur between parallel, dendritic, and trellis patterns. 18.1: The Stream System (10)

    18.1: The Stream System (11)

    Trellis drainage patterns look similar to their namesake, the common garden trellis. Trellis drainage develops in folded topography like that found in the Appalachian Mountains of North America. Down-turned folds called synclines form valleys in which resides the main channel of the stream. Short tributary streams enter the main channel at sharp angles as they run down sides of parallel ridges called anticlines. Tributaries join the main stream at nearly right angles. 18.1: The Stream System (12)

    18.1: The Stream System (13)

    The rectangular drainage pattern is found in regions that have undergone faulting. Streams follow the path of least resistance and thus are concentrated in places were exposed rock is the weakest. Movement of the surface due to faulting off-sets the direction of the stream. As a result, the tributary streams make sharp bends and enter the main stream at high angles.

    View an offset stream along the San Andreas Fault in Google Earth.

    18.1: The Stream System (14)

    The radial drainage pattern develops around a central elevated point. This pattern is common to such conically shaped features as volcanoes. The tributary streams extend the headward reaches upslope toward the top of the volcano. 18.1: The Stream System (15)

    18.1: The Stream System (16)

    The centripetal drainage pattern is just the opposite of the radial as streams flow toward a central depression. This pattern is typical in the western and southwestern portions of the United States where basins exhibit interior drainage. During wetter portions of the year, these streams feed ephemeral lakes, which evaporate away during dry periods. Salt flats are created in these dry lake beds as salt dissolved in the lake water precipitates out of solution and is left behind when the water evaporates away.

    18.1: The Stream System (17)

    Deranged or contorted patterns develop from the disruption of a pre-existing drainage pattern. Figure \(\PageIndex{11}\) began as a dendritic pattern but was altered when overrun by glacier. After receding, the glacier left behind fine grain material that form wetlands and deposits that dammed the stream to impound a small lake. The tributary streams appear significantly more contorted than they were prior to glaciation. 18.1: The Stream System (18)

    The patterns described above are accordant, or correlated with the structure and relief over which they flow. Those streams that are discordant with the rocks over which they flow are either antecedent or superimposed. For instance, antecedent streams flowed across bedrock structures prior to uplift. Slow mountain building permitted stream erosion to keep pace with uplift. Such appears to be the case for the Columbia River that cuts across the Cascade Mountains. Streams in portions of the Appalachian Mountains have formed in weaker rock that through time has eroded away. These streams appear to be superimposed over the rock layers that they presently flow over. The Cumberland Gap is a famous water gap formed in this way as it cuts through the folds of the Appalachians.

    18.1: The Stream System (2024)
    Top Articles
    Greek Chicken Meatballs | Kyndra Holley
    Bobby Flay's Crispy Coconut Scallion Rice Recipe • Steamy Kitchen Recipes Giveaways
    Funny Roblox Id Codes 2023
    Golden Abyss - Chapter 5 - Lunar_Angel
    Www.paystubportal.com/7-11 Login
    Joi Databas
    Shs Games 1V1 Lol
    Evil Dead Rise Showtimes Near Massena Movieplex
    Steamy Afternoon With Handsome Fernando
    fltimes.com | Finger Lakes Times
    Detroit Lions 50 50
    18443168434
    Newgate Honda
    Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
    Grace Caroline Deepfake
    978-0137606801
    Nwi Arrests Lake County
    Missed Connections Dayton Ohio
    Justified Official Series Trailer
    London Ups Store
    Committees Of Correspondence | Encyclopedia.com
    Pizza Hut In Dinuba
    Jinx Chapter 24: Release Date, Spoilers & Where To Read - OtakuKart
    How Much You Should Be Tipping For Beauty Services - American Beauty Institute
    Sizewise Stat Login
    VERHUURD: Barentszstraat 12 in 'S-Gravenhage 2518 XG: Woonhuis.
    Jet Ski Rental Conneaut Lake Pa
    Unforeseen Drama: The Tower of Terror’s Mysterious Closure at Walt Disney World
    Ups Print Store Near Me
    C&T Wok Menu - Morrisville, NC Restaurant
    How Taraswrld Leaks Exposed the Dark Side of TikTok Fame
    University Of Michigan Paging System
    Dashboard Unt
    Access a Shared Resource | Computing for Arts + Sciences
    2023 Ford Bronco Raptor for sale - Dallas, TX - craigslist
    Speechwire Login
    Healthy Kaiserpermanente Org Sign On
    Restored Republic
    3473372961
    Jambus - Definition, Beispiele, Merkmale, Wirkung
    In Branch Chase Atm Near Me
    Ark Unlock All Skins Command
    Craigslist Red Wing Mn
    Jail View Sumter
    Birmingham City Schools Clever Login
    Thotsbook Com
    Funkin' on the Heights
    Caesars Rewards Loyalty Program Review [Previously Total Rewards]
    Vci Classified Paducah
    Www Pig11 Net
    Ty Glass Sentenced
    Latest Posts
    Article information

    Author: Gregorio Kreiger

    Last Updated:

    Views: 6499

    Rating: 4.7 / 5 (77 voted)

    Reviews: 92% of readers found this page helpful

    Author information

    Name: Gregorio Kreiger

    Birthday: 1994-12-18

    Address: 89212 Tracey Ramp, Sunside, MT 08453-0951

    Phone: +9014805370218

    Job: Customer Designer

    Hobby: Mountain biking, Orienteering, Hiking, Sewing, Backpacking, Mushroom hunting, Backpacking

    Introduction: My name is Gregorio Kreiger, I am a tender, brainy, enthusiastic, combative, agreeable, gentle, gentle person who loves writing and wants to share my knowledge and understanding with you.